DECK BASE

GRANULAR RUBBER SUBSTRATE

- Available in sheets, rolls and pads. Extremely versatile thanks to the variety of formats
- Made of granules of recycled rubber thermal-bonded with polyurethane.
 Resistant to chemical interactions, maintains its characteristics in time and is 100% recyclable
- The thermal-bonded rubber granules dampen vibrations, thus insulating the noise produced by footsteps. Also ideal as a wall barrier and resilient strip for accustic separation
- Perfect as a substrate of patio substructures. Permeable to water, ideal for outdoor use

CODE		В	L	S	density	shore A	pcs
		[mm]	[m]	[mm]	[kg/m³]		
GRANULOROLL	1	80	6	8	750	50	1
GRANULO100	1	100	15	4	750	50	1
GRANULOMAT	2	1250	10	6	750	50	1
BASEPAD	3	80	0,08	10	750	50	20

TECHNICAL DATA

properties	standard	value
Hardness	-	50 shore A
Density	-	750 kg/m³
Apparent dynamic stiffness s't	ISO 29052-1	66 MN/m³
Theoretical estimate of the degree of footstep attenuation $\Delta L_{w}^{\ (1)}$	ISO 12354-2	22,6 dB
System resonance frequency f_0 ⁽¹⁾	ISO 12354-2	116.3 Hz
Compression deformation stress:		
10% deformation	-	21 kPa
25% deformation	-	145 kPa
Elongation at failure	-	27%
Thermal conductivity λ	UNI EN 12667	0,033 W/mK

 $^{^{(1)}}$ The load considered is m'=125 kg/m².